Ax=a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮annn×nx1x2⋮xnn×1=∑i=1na1ixi⋮∑i=1nanixin×1
∂xk∂Ax=a1k⋮ank⟹∂x∂Ax=a11⋮an1a12⋱⋯ann=A
x⊤Ax=[x1⋯xn]∑i=1na1ixi⋮∑i=1nanixi=j=1∑n(xji=1∑najixi)
∂xk∂x⊤Ax⟹∂x∂x⊤Ax=i=1∑nakixi+j=1∑nxjajk=i=1∑nxi(aki+aik)=[x1⋯xn]a1k+ak1⋮ank+akn=x⊤(A+A⊤)
F(x)x∗=i=1∑mfi(x)2=∥f(x)∥2=f(x)⊤f(x)x=[x1⋯xn]⊤=xargminF(x)
m×1f(x)=m×nf(x)An×1f(x)x−m×1f(x)b
F(x)=f(x)⊤f(x)=(Ax−b)⊤(Ax−b)=x⊤A⊤Ax−1×m(x⊤A⊤)m×1(b−1×m(b⊤m×1(Ax)+b⊤b=x⊤A⊤Ax−2b⊤Ax+b⊤b
⟹⟹⟹∂x∂F(x)=0x⊤(A⊤A+(A⊤A)⊤)−2b⊤A=0A⊤Ax=A⊤bx=(A⊤A)−1A⊤b
f(x+Δx)f(x+Δx)=f(x)+f′(x)Δx+2!1f′′(x)Δx2+HOT=f(x)+i=1∑∂xi∂fΔxi+2!1i=1∑j=1∑∂xi∂xj∂2fΔxiΔxj+HOT
denote F(x)=∑i=1mei(x)2=∥e(x)∥2=e(x)⊤e(x) instead of f(x)⊤f(x) to avoid confusion
∂xi∂F∂xi∂xj∂2F=2j=1∑ejJji∂xi∂ej=2k=1∑(JkjJki=Hkij∂xj∂ek∂xi∂ek+ekassume →0∂xi∂xj∂2ek)
e(x+Δx)=e(x)+i=1∑m∂xi∂eΔxi+HOT≈e(x)+JΔxJ=[∂x1∂e⋯∂xn∂e]